3,301 research outputs found

    Anomalous shell effect in the transition from a circular to a triangular billiard

    Get PDF
    We apply periodic orbit theory to a two-dimensional non-integrable billiard system whose boundary is varied smoothly from a circular to an equilateral triangular shape. Although the classical dynamics becomes chaotic with increasing triangular deformation, it exhibits an astonishingly pronounced shell effect on its way through the shape transition. A semiclassical analysis reveals that this shell effect emerges from a codimension-two bifurcation of the triangular periodic orbit. Gutzwiller's semiclassical trace formula, using a global uniform approximation for the bifurcation of the triangular orbit and including the contributions of the other isolated orbits, describes very well the coarse-grained quantum-mechanical level density of this system. We also discuss the role of discrete symmetry for the large shell effect obtained here.Comment: 14 pages REVTeX4, 16 figures, version to appear in Phys. Rev. E. Qualities of some figures are lowered to reduce their sizes. Original figures are available at http://www.phys.nitech.ac.jp/~arita/papers/tricirc

    Periodic-orbit approach to the nuclear shell structures with power-law potential models: Bridge orbits and prolate-oblate asymmetry

    Full text link
    Deformed shell structures in nuclear mean-field potentials are systematically investigated as functions of deformation and surface diffuseness. As the mean-field model to investigate nuclear shell structures in a wide range of mass numbers, we propose the radial power-law potential model, V \propto r^\alpha, which enables a simple semiclassical analysis by the use of its scaling property. We find that remarkable shell structures emerge at certain combinations of deformation and diffuseness parameters, and they are closely related to the periodic-orbit bifurcations. In particular, significant roles of the "bridge orbit bifurcations" for normal and superdeformed shell structures are pointed out. It is shown that the prolate-oblate asymmetry in deformed shell structures is clearly understood from the contribution of the bridge orbit to the semiclassical level density. The roles of bridge orbit bifurcations in the emergence of superdeformed shell structures are also discussed.Comment: 20 pages, 23 figures, revtex4-1, to appear in Phys. Rev.

    Raised polyamines in erythrocytes from melanoma-bearing mice and patients with solid tumours

    Get PDF
    The levels of polyamines (putrescine, spermidine and spermine) in erythrocytes and plasma were studied using Cloudman S-91 melanoma grown in the lungs of DBA/2 mice. Polyamine levels and the numbers of tumour-cell colonies in the lungs were determined at weekly intervals. Putrescine levels in both erythrocytes and plasma significantly increased 1 week after tumour inoculation. Three weeks after inoculation, however, putrescine levels in the erythrocytes showed a greater increase than those in plasma. Spermidine and spermine levels were initially high at 2 weeks in plasma and at 4 weeks in erythrocytes. However, by 6 weeks the spermidine levels showed a greater increase in erythrocytes than in plasma. These data suggest that erythrocytes may absorb and store polyamines released into the circulation

    Numerical determination of entanglement entropy for a sphere

    Full text link
    We apply Srednicki's regularization to extract the logarithmic term in the entanglement entropy produced by tracing out a real, massless, scalar field inside a three dimensional sphere in 3+1 flat spacetime. We find numerically that the coefficient of the logarithm is -1/90 to 0.2 percent accuracy, in agreement with an existing analytical result

    Transmission Phase of an Isolated Coulomb-Blockade Resonance

    Full text link
    In two recent papers, O. Entin-Wohlman et al. studied the question: ``Which physical information is carried by the transmission phase through a quantum dot?'' In the present paper, this question is answered for an islolated Coulomb-blockade resonance and within a theoretical model which is more closely patterned after the geometry of the actual experiment by Schuster et al. than is the model of O. Entin-Wohlman et al. We conclude that whenever the number of leads coupled to the Aharanov-Bohm interferometer is larger than two, and the total number of channels is sufficiently large, the transmission phase does reflect the Breit-Wigner behavior of the resonance phase shift.Comment: 6 pages and one figur

    Can Geometric Test Probe the Cosmic Equation of State ?

    Get PDF
    Feasibility of the geometric test as a probe of the cosmic equation of state of the dark energy is discussed assuming the future 2dF QSO sample. We examine sensitivity of the QSO two-point correlation functions, which are theoretically computed incorporating the light-cone effect and the redshift distortions, as well as the nonlinear effect, to a bias model whose evolution is phenomenologically parameterized. It is shown that the correlation functions are sensitive on a mean amplitude of the bias and not to the speed of the redshift evolution. We will also demonstrate that an optimistic geometric test could suffer from confusion that a signal from the cosmological model can be confused with that from a stochastic character of the bias.Comment: 11 pages, including 3 figures, accepted for publication in ApJ

    Fast scintillation counter system and performance

    Get PDF
    An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations

    The structure of the shower disk observed at Mt. Norikura

    Get PDF
    The structure of the EAS shower disk, the arrival time distribution of charged particles at the core of the small or middle size shower, is measured at Mt. Norikura in Japan. Four fast scintillation counters with an area of 0.25 sq m and a fast trigger system are added to the Mt. Norikura EAS array for the study

    Near Extremal Black Hole Entropy as Entanglement Entropy via AdS2/CFT1

    Full text link
    We point out that the entropy of (near) extremal black holes can be interpreted as the entanglement entropy of dual conformal quantum mechanics via AdS2/CFT1. As an explicit example, we study near extremal BTZ black holes and derive this claim from AdS3/CFT2. We also analytically compute the entanglement entropy in the two dimensional CFT of a free Dirac fermion compactified on a circle at finite temperature. From this result, we clarify the relation between the thermal entropy and entanglement entropy, which is essential for the entanglement interpretation of black hole entropy.Comment: LaTeX, 32 pages, 7 figures; refinement in the organizatio
    corecore